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Abstract
We address the problem of the existence of thermal rectification in
inhomogeneous (in particular, graded) chains. Searching for analytical results,
we investigate the symmetry properties of the thermal conductivity of the
quantum inhomogeneous harmonic chain of oscillators with self-consistent
reservoirs, an analytically treatable effective anharmonic model (the inner
reservoirs mimic the anharmonic on-site potentials). Considering the linear
response regime, i.e., for the system submitted to a small gradient of
temperature, we show that, even with quantum effects in the conductivity,
there is no thermal rectification. Moreover, as a secondary result, we analyze
an old expression derived for the thermal conductivity of pure harmonic
chains (i.e., a chain with baths at the boundaries only), and prove that there
is no thermal rectification in such inhomogeneous systems, as suggested by
numerical simulations in previous works.

PACS numbers: 05.70.Ln, 05.40.−a, 44.10.+i

1. Introduction

One of the demands of theoretical non-equilibrium statistical physics is the derivation of
macroscopic phenomenological laws of thermodynamic transport from simple microscopic
Hamiltonian models. After decades of intensive investigations [1, 2], the understanding of heat
conduction from first principles is still quite incomplete. In particular, the precise conditions
that a dynamical system of interacting particles must satisfy in order to obey Fourier’s law are
still unknown: Fourier’s law of heat conduction, F = −∇T , relates the heat flow F to the
temperature gradient ∇T . One of the main obstacles in the area is that central questions involve
nonlinear dynamical systems, and so, with most works limited to numerical simulations, it
has been difficult to arrive at conclusive results. Contradictions exist: e.g., in [3] the authors
claim that the anharmonicity (soft or hard) of the on-site potential is enough to guarantee
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Fourier’s law, but in [4] a counterexample is given. To quote some well-known mathematical
physicists working on the subject [5], a complete and decisive mathematical study ‘is not even
on the horizon’. Thus, to carry out the necessary analytical investigations, approximative
schemes and/or effective models have been proposed and details studied [5–9]. An example
of an effective model proposed a while ago [10, 11], but recently revisited [7, 8, 12–14], is the
harmonic chain of oscillators with self-consistent stochastic reservoirs. This model is given
by a chain of N harmonic oscillators, where the first and last sites are coupled to ‘real’ thermal
baths with fixed temperatures, and the inner sites are linked to reservoirs with temperatures
determined such that, in the steady state, on average, there is no heat flow between them and
the chain (the inner baths do not inject heat into the system, and they represent a mechanism
for phonon scattering only, mimicking the absent anharmonic interactions).

In this scenario of intensive study of the microscopic physical mechanism of energy
transport, and with the advent of nanotechnology, the idea of possible applications emerged:
e.g., the possibility to control the heat flow by constructing thermal (nano)instruments such
as diodes or rectifiers [15]. A thermal diode is a device in which the heat flow changes
if the device is inverted between two heat baths. The theoretical construction of rectifiers
involves difficulties similar to those present in the study of the microscopic origin of the
heat flow: namely, many works are carried out by means of numerical computations, with
few conclusive results. Of course, there are also analytical investigations in simple models
(such as the two-level spin-boson model [16]) or in effective systems (such as the billiard
systems [17, 18]). In particular, most of the proposed diodes are constructed (via computer
simulations) by coupling two or three chains with different nonlinear on-site potentials, a
criticized procedure: in [19], the authors claim that it will be difficult to construct such a diode
(segmented chain) in practice. However, in a recent experimental work, Chang et al [20] build
a nanoscale thermal rectifier using a different procedure: namely, they use a graded mass
material (nanotubes externally and inhomogeneously mass loaded with heavy molecules).
The system is claimed to present asymmetric axial thermal conductance, with greater heat
flow in the direction of decreasing mass density. Following this approach, some other authors
[21] performed numerical simulations to obtain a theoretical description of diodes (and even
thermal transistors [22]) with graded materials. Their results and claims suggest us that a
precise mechanism to build thermal rectifiers is given by taking any anharmonic system with
its structure gradually changed in space, e.g. an asymmetrically mass-loaded system.

In a previous paper [14], having in mind the accurate investigation of the conditions
which are sufficient to obtain an asymmetric heat conductivity, we analytically study the heat
flow in the harmonic crystal with self-consistent stochastic reservoirs and arbitrary structures
(including the graded one), an effective and analytically treatable anharmonic model: in
opposition to the pure harmonic models, it obeys Fourier’s law [7]. We perform a perturbative
and rigorous [23] computation of the thermal conductivity, and show that it is symmetric (i.e.,
there is no thermal rectification) even for the graded system.

Now, in the present work, we consider the quantum version of this harmonic chain with
self-consistent reservoirs and inhomogeneous structure in order to investigate if quantum
effects may induce the asymmetric behavior: again, we recall that Fourier’s law also holds in
such quantum model [8]. As well known [8, 13], quantum effects cannot be neglected in the
study of heat conduction in low temperatures: for example, in homogeneous self-consistent
chains [8], the thermal conductivity becomes an explicit function of the temperature in the
quantum case and low temperature regime, but it does not change in the classical one (or in the
high temperature regime). Here, considering a small temperature gradient, i.e., in the linear
response regime, we show that the thermal conductivity, although presenting a more intricate
structure, is still symmetric, even for the graded system.
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The rest of the paper is organized as follows. For a more complete description of the
problem involving inhomogeneity and asymmetry in the heat flow, in section 2 we first analyze
pure harmonic inhomogeneous chains with baths at the boundaries only, and we also review
the classical harmonic chain with self-consistent reservoirs. In section 3, we investigate the
thermal conductivity of the quantum inhomogeneous chain with self-consistent reservoirs.
Section 4 is devoted for concluding remarks.

2. Symmetry of thermal conductivity in some classical inhomogeneous models

Graded materials, i.e. inhomogeneous systems whose composition and/or structure change
gradually in space, have recently attracted great attention [24]. Their physical properties
are of interest to many areas: material sciences, engineering, optics, etc. Their thermal
characteristics, however, are not well known. In a recent paper [21], the heat flow is
investigated, by means of computer simulations, in a harmonic graded mass model and also in
a specific anharmonic graded mass chain, with a Fermi–Pasta–Ulam β potential. The authors
find a symmetric flow for the harmonic case, and a thermal rectification for the anharmonic
chain with fixed boundary conditions.

In this section, for a more general understanding of the relation between inhomogeneity
and symmetry in thermal conductivity, we briefly describe some results in classical graded
systems. First, by using a rigorous expression derived by Casher and Lebowitz a while ago
[25], we show that, as indicated by the simulations in the recent paper mentioned above [21],
the heat flow is symmetric in any inhomogeneous pure harmonic chains (i.e., harmonic chains
with reservoirs at the boundaries only). In what follows, we review our results [14] obtained
for the heat conductivity in the inhomogeneous classical harmonic chain with self-consistent
stochastic reservoirs.

Let us show the symmetry in the heat flow for an arbitrary pure harmonic chain. Consider
an one-dimensional lattice with N particles (sites), with arbitrary masses (which may be
graded: m1 < m2 < · · · < mN , or not), and the Hamiltonian

H =
N∑

j=1

[
p2

j

2mj

+
1

2

N∑
k=1

qj�jkqk

]
=

N∑
j=1

Hj, (1)

where � is a positive matrix. As usual, the time evolution is given by the stochastic differential
equations

dqj

dt
= ∂H

∂pj

= pj

mj

,

dpj

dt
= −∂H

∂qj

− ζjpj + γ
1/2
j ηj = −(�q)j − ζjpj + γ

1/2
j ηj ,

(2)

where ζj = (δj,1 + δj,N )ζ is the dissipative constant; γj = 2mjζjTj (δj,1 + δj,N ) and ηj are
white noises describing the thermal reservoirs at the boundaries (j = 1 and j = N ), with the
expectations

〈ηj (t)〉 = 0; 〈ηj (t)ηj ′(t ′)〉 = δj,j ′δ(t − t ′). (3)

The heat flow at site j , in the steady state, is given by

Fj − Fj−1 = − lim
t→∞

〈
dHj

dt

〉
. (4)
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As Fj−1 = Fj = Fj+1 = · · ·, in the steady state, we use the notation F for the heat flow, i.e.
we drop the index j . Following Casher and Lebowitz [25], we have

F = (T1 − TN)
ζ 2m1mN

π

×
∫ +∞

−∞
dω

ω2|C1,N (ω)|2
(K1,N − ζ 2ω2m1mNK2,N−1)2 + ζ 2ω2(m1K2,N + mNK1,N−1)2

,

(5)

where Kl,m(ω) is the determinant of (� − ω2M) for a chain which starts from the lth particle
and ends with the mth one; M is the diagonal matrix for the particle masses; C1,N is the
cofactor of Z1,N , where Z = � − iωML − ω2M,L is a diagonal matrix with Lj,j = ζ if
j = 1 or N, otherwise Lj,j = 0. Note that, as well known, Fourier’s law does not hold for the
harmonic chain: the heat flow is proportional to the temperature difference (T1 − TN) instead
of to the temperature gradient (T1 − TN)/(N − 1). The solution of the integral above may
be very complicate: an explicit formula for the thermal conductivity is known only for some
specific values of the mass, e.g. for m1 = m2 = · · · = mN . Anyway, for formula (5) above, it
is clear that when we invert the system between the thermal reservoirs, i.e., if we keep T1 and
TN but replace the particle 1 by N, 2 by N − 1, etc, the thermal conductivity does not change:
in formula (5), after the replacement, K1,N becomes KN,1, which has an identical value; the
same for K2,N−1; m1 becomes mN and vice versa. Finally, m1K2,N becomes mNKN−1,1 and
mNK1,N−1 is replaced by m1KN,2. In short, for any value of the masses m1, . . . , mN , the
heat flow is symmetric in the pure harmonic chain (as we invert the system between two heat
baths).

Now we turn to the effective anharmonic model, namely, to the harmonic chain with
self-consistent reservoirs. It is given by the previous equations (1)–(3), now with ζj = ζ for
j = 1, 2, . . . , N . We recall the results of [14], where we make a perturbative, but rigorous
[23], investigation of such model. First, we write the Hamiltonian of the system as

H =
N∑

j=1

[
1

2

(
p2

j

mj

+ Mjq
2
j

)
+

1

2

N∑
l=1

qjJj,lql

]
=

N∑
j=1

Hj, (6)

with J being Hermitian, Jj,l = Jl,j . We define Qj ≡ qj
√

mj and Pj ≡ pj/
√

mj , to get

Hj = P 2
j

2
+

M

2
Q2

j +
1

2

N∑
l=1

QlDl,jQj , (7)

where for technical reasons, we keep a quadratic term Q2
j with constant coefficient M/2 (the

difference between M and Mj/mj is included in the diagonal part of D): it is more difficult to
treat a system with Mj instead M, i.e., with the coefficient changing at each site. Note that,
essentially (discarding the details in the diagonal), we have D = M−1/2JM−1/2, where M
is the diagonal matrix for the particle masses. Thus, for a weak interparticle interaction D
(which may be given, e.g. by any interaction J and heavy particle masses), after analytical
computations we obtain, up to O(D3),

F = κ
T1 − TN

N − 1
, (8)

i.e. Fourier’s law holds with thermal conductivity κ given by

κ

N − 1
=

(
1

G1
+

1

G2
+ · · · +

1

GN−1

)−1

, (9)
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Gj = Dj+N,j+1

[
Dj+N,j+1

2ζM
− Dj+N,j+1

4ζM2

Dj+N,j + Dj+1+N,j+1

2

]
, (10)

where D is the 2N × 2N matrix involving the N × N matrix D

D =
(

0 0
D 0

)
. (11)

The symmetry in the thermal conductivity is transparent: nothing changes when we invert the
chain, since Dj+N,j+1 = Dj,j+1 and D is Hermitian. In [14] we still give arguments which
indicate that the symmetry follows for the remaining terms of the perturbative series. Anyway,
a possible contribution of these terms is insignificant: O(D4).

3. Conductivity in quantum inhomogeneous chains

Now we consider the quantum version of the harmonic oscillators chain with self-consistent
baths, as said before, an analytically treatable effective anharmonic model.

The investigation of quantum models is a must for the understanding of the thermal
conductivity: to describe the heat flow at low temperatures, it is necessary to take into account
quantum effects, which may introduce significant changes. For example, as said before,
in the classical description of the self-consistent harmonic chain with the same mass for the
particles, Fourier’s law holds, and the thermal conductivity does not depend on the temperature
[7]. But, in the quantum version, the thermal conductivity (which is still normal) changes with
temperature [8]: in particular, for the low-temperature regime, the dependence on temperature
for thermal conductivity of the system with pinning on-site is quite different from that without
such potential. These properties suggest us to investigate if quantum effects may be responsible
for the origin of asymmetry in inhomogeneous materials.

Here, to describe the quantum system and its evolution to the steady state, we use a
Ford–Kac–Mazur approach [26], as details presented in [8]. Such an approach considers the
baths (connected to the chain) modeled also as mechanical harmonic systems, with initial
coordinates and momenta determined by some statistical distribution (that is the origin of the
stochasticity of the system). The expression for the heat flow in the steady state is obtained
by solving the quantum dynamical equations, and by taking the stochastic distribution for the
initial coordinates of the baths, as well as the limit t → ∞.

Let us describe the model (for clearness, we keep the notation of [8], where all details
are presented). Our system is given by a chain (W) with harmonic interparticle and on-site
potentials, with each site connected to a bath (B), also with harmonic interactions. The
Hamiltonian of the system (chain and baths) is given by

H = HW +
N∑

i=1

HBi
+

N∑
i=1

Vi ,

HW = 1

2
ẊT

WMWẊW +
1

2
XT

W�WXW,

HBi
= 1

2
ẊT

Bi
MBi

ẊBi
+

1

2
XT

Bi
�Bi

XBi
,

Vi = XT
WVBi

XBi
,

(12)

where MW and MBi
are the particle-mass diagonal matrices for the chain and baths, �W and

�Bi
are symmetric matrices representing the interparticle and on-site harmonic interactions,

and VBi
describes the interaction between the i-site and its bath (details ahead). For each part,

5



J. Phys. A: Math. Theor. 42 (2009) 225006 E Pereira and H C F Lemos

X = [
X1, X2, . . . , XNs

]T
, where Xr is the position operator of the rth particle; Ẋ = M−1P ,

where Pl is the momentum operator of the lth particle. We have [Xr, Pl] = ih̄δr,l . The
dynamics of the system is given by the Heisenberg equations

MWẌW = −�WXW −
∑

i

VBi
XBi

,

MBi
ẌBi

= −�Bi
XBi

−
∑

i

V T
Bi

XW .
(13)

The heat currents inside the chain and from the reservoir to the chain are related to
〈
XWẊT

W

〉
and

〈
XBẊT

W

〉
. To find the exact expressions, we turn to the Heisenberg equations above (13),

treat the equations of the baths as linear inhomogeneous equations, plug these solutions into
the equations for the chain, and then we take the average over the initial conditions of the
baths, which we assume to be distributed according to equilibrium phonon distributions with
properly chosen temperatures (recall that we want the self-consistent condition, that is, we
need to take the temperatures of the inner baths such that there is no heat flow between an
inner bath and its site). The steady state is reached by taking the limit t → ∞ (for technical
reasons we still take t0 → −∞, and consider the Fourier transform of t). We stress that the
formalism is detailed in [8], and references there in. The heat flow, thermal conductivity, etc,
are analyzed for sites in the bulk of a very large chain, i.e. sites far from the boundaries. The
expression for the heat flow from the lth reservoir to the chain is given by

Fl =
N∑

m=1

ζ 2
∫ +∞

−∞
dω ω2

∣∣[G+
W(ω)

]
l,m

∣∣2 h̄ω

π
[f (ω, Tl) − f (ω, Tm)], (14)

where ζ is the dissipation constant; it controls the coupling strength to the reservoirs, which
are taken to be Ohmic, as usual:

G+
W(ω) =

[
−ω2MW + �W −

∑
l

�+
l (ω)

]−1

, (15)

with the matrix �+
l having only one non-vanishing element:

(
�+

l

)
l,l

= iζω; f (ω, Tl) is the
phonon distribution for the lth bath

f (ω, Tl) =
[

exp

(
h̄ω

kBTl

)
− 1

]−1

, (16)

and the variable ω in the expressions above comes from the Fourier transform

X̃(ω) = 1

2π

∫ +∞

−∞
dtX(t) eiωt . (17)

Let us assume the linear response regime, i.e., the difference between the temperatures T1 and
TN is small, precisely, T = |T1 − TN | 
 T = (T1 + TN)/2. It leads to simplifications in the
expression for the heat flow. In particular, for Fl above (14), we obtain

Fl = ζ 2
∫ +∞

−∞
dω

h̄ω3

π

∂f (ω, T )

∂T

N∑
m=1

∣∣[G+
W(ω)

]
l,m

∣∣2
(Tl − Tm). (18)

And for the heat flow inside the chain (to be specific, we take the flux from the lth to the (l + 1)

th site)

Fl,l+1 = �l,l+1〈XlẊl,l+1〉 = −�l,l+1ζ

π

∫ +∞

−∞
dω ω

(
h̄ω

2kBT

)2

cosech2

(
h̄ω

2kBT

)
×

N∑
m=1

kBTm Im
{[

G+
W(ω)

]
l,m

[
G+

W(ω)
]∗
l+1,m

}
, (19)
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where ∗ denotes the complex conjugate, and Im the imaginary part. In the formula above for
Fl,l+1 and in what follows, we restrict the interparticle interaction to nearest neighbors only.
Let us say, once more time, that formula (19) above and previous expressions are already
described in [8].

To perform the computation (i.e., the sum and the integration in (19)) in order to obtain a
precise expression for the heat flow, we need to specify the matrix G+

W , i.e. the particle masses
MW and the interparticle potential �W , as well as the temperature profile, which is found by
assuming that Fl = 0 for any inner site. The determination of G+

W(ω), the inverse matrix
given by equation (15), may be a very hard task—a precise solution is known only for some
specific cases: e.g., for a homogeneous interparticle interaction � connecting next-neighbors
sites, and for all particles with the same mass MW = mI [8]; and also for the case of particles
with alternate masses, i.e. mj = m1 for j odd, and mj = m2 for j even [13]. However, for
the question of existence or absence of symmetry in the heat flow inside the chain, a precise
answer is still possible even in the case of a generic next-neighbor interparticle interaction and
an inhomogeneous matrix for the particle masses (graded or not), as we show below.

Let us analyze the formula for Fl,l+1 (19). First, we need to know the temperature profile.
Instead of trying to obtain it from equation (18) in the self-consistent condition Fl = 0 for
any inner site l, we follow the strategy used in the works on homogeneous and alternate mass
chains [8, 13]: we take the profile obtained for the classical model [14]. The trustworthiness
of such a procedure comes from the fact that, as |G+

W(ω)|2 does not depend on T, the solution
of Fl = 0 has a smooth behavior as a function of T, that is, the obtained expression for the
temperature profile shall be valid for high and also low T. Moreover, in the high-temperature
regime, the quantum and classical behaviors coincide. Thus, we can use here the expression
for the temperature profile obtained in the analysis of the classical inhomogeneous chain [14].
We recall first that, in this previous work, we show that a change of variables maps (without
loss of generality) a system with inhomogeneous particle masses into another one where the
particles have unit mass, but the interparticle interaction changes. Hence, from now on, we
treat a system with unit masses and arbitrary interparticle potential. From equation (26) of
[14] and previous expressions there in, we obtain

Tk = T1 +
G−1

1 + · · · + G−1
k−1

G−1
1 + · · · + G−1

N−1

(TN − T1), (20)

where Gj is given by equation (10) above. We turn to the expression for Fl,l+1 (19), to recall
that

Fl,l+1 ∝
N∑

m=1

TmIm{Gl,mG∗
l+1,m},

where, for ease of notation, we write G+
W(ω) as G. Now, let us keep our chain and invert the

thermal reservoirs at the boundaries. If there exists a thermal rectification in the system, then
the sum of the previous heat flow and the new one (for the chain with inverted reservoirs) does
not vanish: i.e., the absolute value of the heat flow changes as we invert the thermal reservoirs.
For the system with inverted reservoirs, the temperature profile becomes

T ′
k = TN +

G−1
1 + · · · + G−1

k−1

G−1
1 + · · · + G−1

N−1

(T1 − TN).

Hence, if we sum up the flows, we obtain

7
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Fl,l+1 + F ′
l,l+1 = C

N∑
m=1

(Tm + T ′
m) Im(Gl,mG∗

l+1,m)

= C

N∑
m=1

(T1 + TN) Im(Gl,mG∗
l+1,m)

= C(T1 + TN)

N∑
m=1

Im
(
Gl,mG

†
m,l+1

)
= C(T1 + TN) Im(GG†)l,l+1.

We recall that

G = [� − ω2M − iζωI ]−1,

in fact, with the change of variables, we also have M = I . Hence,

GG† = [� − ω2M − iζωI ]−1[� − ω2M + iζωI ]−1

= {[� − ω2M + iζωI ][� − ω2M − iζωI ]}−1

= {(� − ω2M)2 + ζ 2ω2I }−1,

and so, all the elements of GG† are real ⇒ Im(GG†)l,l+1 = 0. That is,

Fl,l+1 + F ′
l,l+1 = 0 ⇒ Fl,l+1 = −F ′

l,l+1.

Precisely, there is no thermal rectification in the quantum chain with self-consistent reservoirs
for the system submitted to a small gradient of temperature (i.e., in the linear response regime).

4. Final remarks

In this paper, we address the question of a possible thermal rectification in inhomogeneous
(in particular, graded) chains. Searching for analytical results, we consider the pure harmonic
chain (a system with harmonic interactions and thermal reservoirs at the boundaries only)
and the harmonic chain with self-consistent anharmonic reservoirs, which is an effective
anharmonic system where the anharmonic on-site interactions are mimicked by baths
connected to each site. Using a well-known result of Casher and Lebowitz, we show the
symmetry in the heat flow (absence of thermal rectification) in inhomogeneous pure harmonic
chains. And, after revisiting our previous result on classical self-consistent harmonic chains,
we analyze the symmetry properties of quantum inhomogeneous self-consistent harmonic
chains in the linear response regime, and we show that, even with quantum effects in the
conductivity, there is no thermal rectification.

As already recalled, the classical and also the quantum harmonic chain with self-consistent
baths obey Fourier’s law of heat conduction, a property of some anharmonic Hamiltonian
systems. Moreover, such a model is rich enough to present other nontrivial properties, such as
the phenomenon of crossover from ballistic to diffusive thermal transport as the system size is
increased [27]. If we consider this model as a good representant of the anharmonic systems,
then our results reinforce the message that inhomogeneity and anharmonicity in a chain are
not sufficient to guarantee asymmetry in the heat flow (in spite of some authors’ opinion).
They also show that the origin of thermal rectification is more intricate than the origin of
normal conductivity: the effective mechanism presented in the self-consistent chain is enough
to assure Fourier’s law, but the inhomogeneous (classical or quantum) version of such model
does not present thermal rectification.

8
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